LogoLogo
Contact support
v2.20
  • Home
  • Product Documentation
v2.20
  • SaaS installation
    • Installation
      • System Requirements
      • Network Requirements
      • Install Using Helm
      • Install Using Base Command Manager
      • Customized Installation
      • Upgrade
      • Uninstall
  • Self-hosted installation
    • Installation
      • Control Plane System Requirements
      • Preparations
      • Network Requirements
      • Install the Control Plane
      • Cluster System Requirements
      • Install Using Helm
      • Customized Installation
      • Upgrade
      • Uninstall
  • Infrastructure setup
    • Authentication and Authorization
      • Authentication and Authorization
      • Users
      • SSO
        • Set Up SSO with SAML
        • Set Up SSO with OpenID Connect
        • Set Up SSO with OpenShift
      • Roles
      • Applications
      • User Applications
      • Access Rules
    • Advanced Setup
      • Node Roles
      • Advanced Control Plane Configurations
      • Advanced Cluster Configurations
      • Integrations
        • Interworking with Karpenter
    • Infrastructure Procedures
      • NVIDIA Run:ai at Scale
      • Monitoring and Maintenance
      • NVIDIA Run:ai System Monitoring
      • Clusters
      • Shared Storage
      • Nodes Maintenance
      • Cluster Restore
      • Secure Your Cluster
      • Compliance
      • Logs Collection
      • Event History
  • Platform management
    • Manage AI Initiatives
      • Adapting AI Initiatives to Your Organization
      • Managing Your Organization
        • Projects
        • Departments
      • Managing Your Resources
        • Nodes
        • Configuring NVIDIA MIG Profiles
        • Node Pools
    • Scheduling and Resource Optimization
      • Scheduling
        • The NVIDIA Run:ai Scheduler: Concepts and Principles
        • How the Scheduler Works
        • Quick Starts
          • Over Quota, Fairness and Preemption
      • Resource Optimization
        • GPU Fractions
        • Dynamic GPU Fractions
        • Optimize Performance with Node Level Scheduler
        • GPU Time-Slicing
        • GPU Memory Swap
        • Quick Starts
          • Launching Workloads with GPU Fractions
          • Launching Workloads with Dynamic GPU Fractions
          • Launching Workloads with GPU Memory Swap
    • Policies
      • Policies and Rules
      • Workload Policies
      • Policy YAML Examples
      • Policy YAML Reference
      • Scheduling Rules
    • Monitor Performance and Health
      • Before You Start
      • Metrics and Telemetry
      • Reports
  • Workloads in NVIDIA Run:ai
    • Introduction to Workloads
    • NVIDIA Run:ai Workload Types
    • Workloads
    • Workload Assets
      • Workload Assets
      • Environments
      • Data Sources
      • Data Volumes
      • Compute Resources
      • Credentials
    • Workload Templates
      • Workspace Templates
    • Experiment Using Workspaces
      • Running Workspaces
      • Quick Starts
        • Running Jupyter Notebooks Using Workspaces
    • Train Models Using Training
      • Standard Training
        • Train Models Using a Standard Training Workload
        • Quick Starts
          • Run Your First Standard Training
      • Distributed Training
        • Train Models Using a Distributed Training Workload
        • Quick Starts
          • Run Your First Distributed Training
    • Deploy Models Using Inference
      • Deploy a Custom Inference Workload
      • Deploy Inference Workloads from Hugging Face
      • Deploy Inference Workloads with NVIDIA NIM
  • Reference
    • CLI Reference
      • Install and Configure CLI
      • Administrator CLI
      • Add NVIDIA Run:ai Authorization to Kubeconfig
      • CLI Commands Reference
        • runai cluster
        • runai config
        • runai kubeconfig
        • runai login
        • runai logout
        • runai mpi
        • runai node
        • runai nodepool
        • runai project
        • runai pytorch
        • runai report
        • runai tensorflow
        • runai training
        • runai upgrade
        • runai version
        • runai whoami
        • runai workload
        • runai workspace
        • runai xgboost
      • CLI Commands Examples
    • API Reference
      • How to Authenticate to the API
      • NVIDIA Run:ai REST API
On this page
Export as PDF
  1. Workloads in NVIDIA Run:ai

Workload Assets

Workload AssetsEnvironmentsData SourcesData VolumesCompute ResourcesCredentials

Last updated 1 month ago

LogoLogo

Corporate Info

  • NVIDIA.com Home
  • About NVIDIA
  • Privacy Policy
  • Manage My Privacy
  • Terms of Service

NVIDIA Developer

  • Developer Home
  • Blog

Resources

  • Contact Us
  • Developer Program

Copyright © 2025, NVIDIA Corporation.