runai training port-forward
forward one or more local ports to a standard training workload
runai training port-forward [WORKLOAD_NAME] [flags]
Examples
# Forward connections from localhost:8080 to a workload on port 8090:
runai training standard port-forward standard-01 --port 8080:8090 --address localhost
# Forward connections from 0.0.0.0:8080 to a workload on port 8080:
runai training standard port-forward standard-01 --port 8080 --address 0.0.0.0 [requires privileges]
# Forward multiple connections from localhost:8080 to a workload on port 8090 and from localhost:6443 to a workload on port 443:
runai training standard port-forward standard-01 --port 8080:8090 --port 6443:443 --address localhost
Options
--address string Bind the workload to a specific local interface or host. E.g., --address localhost or --address 0.0.0.0. (default "localhost")
-h, --help help for port-forward
--pod string Workload pod ID for port-forward, default: distributed(master) otherwise(random)
--pod-running-timeout duration Timeout for pod to reach running state (e.g. 5s, 2m, 3h).
--port stringArray port
-p, --project string Specify the project for the command to use. Defaults to the project set in the context, if any. Use 'runai project set <project>' to set the default.
Options inherited from parent commands
--config-file string config file name; can be set by environment variable RUNAI_CLI_CONFIG_FILE (default "config.json")
--config-path string config path; can be set by environment variable RUNAI_CLI_CONFIG_PATH
-d, --debug enable debug mode
-q, --quiet enable quiet mode, suppress all output except error messages
--verbose enable verbose mode
SEE ALSO
runai training - training management
Last updated